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Abstract

Object segmentation is a fundamental problem
in computer vision and a powerful resource for
development. This paper presents three embod-
ied approaches to the visual segmentation of ob-
jects. Each approach to segmentation is aided
by the presence of a hand or arm in the prox-
imity of the object to be segmented. The first
approach is suitable for a robotic system, where Figure 1: The platforms.
the robot can use its arm to evoke object mo-
tion. The second method operates on a wear-
able system, viewing the world from a human's
perspective, with instrumentation to help detect machines to visually perceive the extent of ma-
and segment objects that are held in the wearer's nipulable objects. Furthermore, we show that the
hand. The third method operates when observing object segmentations that result from these meth-
a human teacher, locating periodic motion (fin- ods can serve as a powerful foundation for the
ger/arm/object waving or tapping) and using it development of more general object perception.
as a seed for segmentation. We show that ob- The presence of a body changes the nature of
ject segmentation can serve as a key resource for perception. The body provides constraint on in-
development by demonstrating methods that ex- terpretation, opportunities for experimentation,
ploit high-quality object segmentations to develop and a medium for communication. Hands in par-
both low-level vision capabilities (specialized fea- ticular are very revealing, since they interact di-
ture detectors) and high-level vision capabilities rectly and flexibly with objects. In this paper, we
(object recognition and localization), demonstrate several methods for simplifying vi-

sual processing by being attentive to hands, either
1. Introduction of humans or robots. This is an important cue

also in primates, as was shown by Perret and col-
Both the machine vision community and cognitive leagues (Perrett et al., 1990), who located areas
science researchers recognize objects as a power- in the brain specific to the processing of the visual
ful abstraction for intelligent systems. Likewise, appearance of the hand (one's own or observed).
those who study cognitive development have a Our first argument is that in a wide range of situ-
long history of analyzing the detailed maturation ations, there are many cues available that can be
of object related competencies in infants and chil- used to make object segmentation an easy task.
dren. But despite the acknowledged importance This is important because object segmentation or
of objects to human cognition and visual percep- figure/ground separation is a long-standing prob-
tion, our robots continue to be challenged by the lem in computer vision, and has proven difficult to
everyday objects that surround them. Funda- achieve reliably on passive systems. The segmen-
mentally, robots must be able to perceive objects tation methods we present are particularly well
in order to learn about them, manipulate them, suited to segmenting manipulable objects, which
and develop the important set of intellectual ca- by definition are potentially useful components of
pabilities that rely on them. In this paper, we the world and therefore worthy of special atten-
demonstrate three embodied methods that allow tion. We look at three situations in which active

'authors ordered alphabetically or interactive cues simplify segmentation:
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(i) Active segmentation for a robot viewing its fact be automatically generalized to other situa-
own actions. A robot arm probes an area, seeking tions. Elsewhere, we have used this ability as the
to trigger object motion so that the robot can basis for learning about and exploiting an object
identify the boundaries of the object through that affordance (Metta and Fitzpatrick, 2003), and to
motion. learn about activities by tracking actions taken

(ii) Active segmentation for a wearable system on familiar objects (Fitzpatrick, 2003).
viewing its wearer's actions. The system moni- Switching our attention from theoretical to
tors human action, issues requests, and uses ac- practical considerations, decades of experience in
tive sensing to detect grasped objects held up to computer vision have shown that object segmen-
view. tation on unstructured, non-static, noisy and low

(iii) Demonstration-based segmentation for a resolution images is a hard problem. The tech-
robot viewing a human's actions. Segmentation niques this paper describes for object segmenta-
is achieved by detecting and interpreting natural tion deal with different combinations of the fol-
human showing behavior such as finger tapping, lowing situations, many of which are classically
arm waving, or object shaking. challenging:

Our second argument is that visual object seg- > Segmentation of an object with colors or tex-
mentation can serve as a powerful foundation for tures that are similar to the background.
the development of useful object related compe- > Segmentation of an object among multiple
tencies in epigenetic systems. We support this by moving objects in a scene.
demonstrating that when segmentation is avail- > S of fixed or in a
able, several other important vision problems can ene, suhoa hea obet
be dealt with successfully - object recognition, Scene as a tble or arsofa.objet loaliztion ede deectin, ec. Segmentation of objects printed or drawn in
object localization, edge detection, etc. a book or in a frame, which cannot be moved

.Object perception relative to other objects on the same page.
2. Insensitivity to luminosity variations.

What our retinas register when we look at the r> Fast operation (near real-time).
world and what we actually believe we see are no- > Low resolution images.
toriously different (Johnson, 2002). How does the The next three sections document three basic
brain make the leap from sensing photons to per- active and interactive approaches to segmenta-
ceiving objects? The development of object per- tion, and then the remainder of the paper shows
ception in human infants is an active and impor- how to use object segmentation to develop ob-
tant area of research (Johnson, 2003). A central ject localization, recognition, and other percep-
question is that of segmentation or 'object unity' tual abilities.
- how a particular collection of surface fragments
become bound into a single object representation. 3. Segmentation on a robot
In our work we focus on identifying or engineer-
ing special situations when object unity is simple The idea of using action to aid perception is
to achive, and show how to exploit such situa- the basis of the field of "active perception"
tions as opportunities for development, so that in robotics and computer vision (Ballard, 1991,
object unity judgements can be made in novel sit- Sandini et al., 1993). The most well-known in-
uations. There is evidence that a similar process stance of active perception is active vision. The
occurs in infants. Spelke and others have shown term "active vision" has become essentially syn-
that the coherent motion of an object is a cue onymous with moving cameras, but it need not
that young infants can use to unite surface frag- be. Work on the robot Cog (pictured in Fig-
ments into a single object (Jusczyk et al., 1999). ure 1) has explored the idea of manipulation-
Needham gives evidence that even a brief expo- aided vision, based on the observation that robots
sure to independent motion of two objects can have the opportunity to examine the world us-
influence an infant's perception of object bound- ing causality, by performing probing actions and
aries in later presentations (Needham, 2001). The learning from the response. In conjunction with
ability to achieve object unity does not appear a developmental framework, this could allow the
fully-formed in the neonate, but develops over robot's experience to expand outward from its
time (Johnson, 2002). In this paper, we explore sensors into its environment, from its own arm to
analogues of this developmental step, and demon- the objects it encounters, and from those objects
strate that the ability to perceive the boundaries outwards to other actors that encounter those
of objects in special, constrained situations can in same objects.



Figure 2: Cartoon motivation for active segmentation. Hu-
man vision is excellent at figure/ground separation (top left),
but machine vision is not (center). Coherent motion is aME

powerful cue (right) and the robot can invoke it by simply
reaching out and poking around. Figure 4: The wearable system monitors the wearer's point

arm (bottom row).
arm~~~0 view(botomtp row)ow ).hile sim ultaneously tracking the wearer's
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Figure 3: This images show the processing steps involved
in poking. The moment of impact between the robot arm
and an object, if it occurs, is easily detected - and then the Figure 5: The wearable system currently achieves segmen-
total motion after contact, when compared to the motion tation by active sensing. When the wearer brings an oh-
before contact and grouped using a minimum cut approach ject up into view (first column), an oscillating light source
(Boykov and Kolmogorov, 2001) gives a very good indication is activated (second column). The difference between images
of the object boundary. (third column) is used to compute a mask (fourth column)

and segment out the grasped object and the hand from the
Object segmentation is a first step in this pro- background via a simple threshold.(fifth column).

gression. To enable it, Cog was given a simple
"poking" behavior, whereby it selects locations in 4. Segmentation on a wearable
its environment, and sweeps through them with
its arm (Metta and Fitzpatrick, 2003). If an ob- Wearable computing systems have the potential
ject is within the axea swept, then the motion gen- to measure most of the sensory input and physi-
erated by the impact of the arm with that object cal output of a person as he or she goes through
greatly simplifies segmenting that object from its everyday activities. A wearable system that con-
background, and obtaining a reasonable estimate trots a human's actions while making these mea-
of its boundary (see Figure 3). The image pro- surements could take advantage of the wearer's
cessing involved relies only on the ability to fixate embodiment and expertise in order to develop
the robot's gaze in the direction of its arm. This more sophisticated perceptual processing.
coordination can be achieved either as a hard- One of the authors is designing a system named
wired primitive or through learning. Within this Duo that consists of a wearable creature and a
context, it is possible to collect good views of the cooperative human (Kemp, 2002). The wearable
objects the robot pokes, and the robot's own arm. component of Duo serves as a high-level controller

This choice of activity has many benefits. (i) that requests actions from the human through
The motion generated by the impact of the arm speech, while the human serves as an innate and
with a rigid object greatly simplifies segmenting highly sophisticated infrastructure for Duo. From
that object from its background, and obtaining a developmental perspective the human is analo-
a reasonable estimate of its boundary (see Fig- gous to a very sophisticated set of innate abilities
ure 3). (ii) The poking activity also leads to that Duo can use to bootstrap development. In
object-specific consequences, since different ob- order for Duo to take full advantage of these abil-
jects respond to poking in different ways. For ex- ities, Duo must learn to better interpret human
ample, a toy car will tend to roll forward, while a actions and their consequences, and learn to ap-
bottle will roll along its side. (iii) The basic oper- propriately request human actions.
ation involved, striking objects, can be performed The wearable side of Duo currently consists of a
by either the robot or its human companion, cre- head-mounted camera, 4 absolute orientation sen-
ating a controlled point of comparison between sors, an LED array, and headphones. The wide
robot and human action. angle lens and position of the head-mounted cam-



Figure 7: Periodic motion can also be used to segment an
"object held by the teacher, if they shake it.

Figure 6: Segmentation based on finger tapping (left). This
periodic motion can be detected through a windowed FFT velop a method that is suitable for segmenting
on the trajectory of points tracked using optic flow, and the objects based on external cues. We assume the
points implicated in the motion used to seed a color segmen- presence of a cooperative human or "teacher" who
tation. The segmentation is applied to a frame with the hand is willing to present objects according to a proto-
absent, grabbed when there is no motion. col based on periodic motion - waving the object,

tapping it with one's finger, etc. (Arsenio, 2002).

era help Duo to view the workspace of the domi- 5.1 Periodicity detection
nant arm. The 4 absolute orientation sensors are
affixed to tile lower arm, upper arm, torso and For events created by human teachers, such as
head of the human, so that Duo may estimate tapping an object or waving their hand in front
the kinematic configuration of the person's head of the robot, the periodic motion can be used to
and dominant arm. The wearable system makes help segment it. Such events are detected through
spoken requests through the headphones and uses two measurements: a motion mask derived by
the LED array to aid vision (see Figure 4). comparing successive images from the camera and

Currently, when Duo detects that the arm has placing a non-convex polygon around any motion
reached for an object and picked the object up, found, and a skin-tone mask derived by a simple
Duo asks to see the object better. When a coop- skin color detector. A grid of points are initial-
erative person brings the object close to his head ized and tracked in the moving region. Tracking
for inspection, Duo recognizes the proximity of is implemented through tie computation of the
the object using the arm kinematics, and turns optical flow using the Lucas-Kanade pyramidal
on a flashing array of white LEDs. The illumina- algorithm. Their trajectory is evaluated using a
tion clearly differentiates between foreground and windowed FFT (WFFT), with the window size on
background since illumination rapidly declines as the order of 2 seconds. If a strong periodicity is
a function of depth. By simply subtracting the found, the points implicated are used as seeds for
illuminated and non-illuminated images from one color segmentation. Otherwise the window size is
another and applying a constant threshold, Duo halved and the procedure is tried again for each
is able to segment the object of interest and the half. A periodogram is determined for all signals
hand (see Figure 5). While the human is holding from the energy of the WFFTs over the spectrum
the object close to the head, Duo kinematically of frequencies. These periodograms are then pro-
monitors head motion and requests that the per- cessed to determine whether they are usable for
son keep his head still if the motion goes above a segmentation. A periodogram is rejected if one
threshold. Minimizing head motion improves the of the following four conditions holds: i) there is
success of the simple segmentation algorithm and more than one energy peak above 50% of the max-
reduces the need for motion compensation prior imum peak; ii) there are more than three energy
to subtracting the images. peaks above 10% of the maximum peak value;

iii) the DC component corresponds to the maxi-
5. Segmentation by demonstration mum energy; iv) peaks in the signal spectrum are

diffuse rather than sharp. This is equivalent to
The two segmentation scenarios described so far passing the signals through a collection of band-
operate on first-person perspectives of the world pass filters. Once we can detect periodic motion
- the robot watching its own motion, or a wear- and isolate it spatially, we can use identify waving
able watching its wearer's motion. Now we de- actions and use them to guide segmentation.



5.2 Waving the hand/arm/finger 6. Building on segmentation

This method has the potential to segment ob-
jects that cannot be moved independently, such We see object segmentation as the first step on a
as objects painted in a book (see Figure 6), or developmental trajectory towards a robust, well-
heavy, stationary objects such as a table or sofa. adapted vision system. It is a key opportunity for
Events of this nature are detected whenever the many kinds of visual learning:
majority of the periodic signals arise from points
whose color is consistent with skin-tone. The al- Learning about low-level features: The seg-
gorithm assumes that skin-tone points moving pe- mented views of objects can be pooled to train
riodically are probably projected points from the detectors for basic visual features - for example,
arm, hand and/or fingers. An affine flow-model is edge orientation. Once an object boundary is
applied to the optical flow data at each frame, and known, the appearance of the edge between the
used to determine the arm/hand/finger trajectory object and the background can be sampled, and
over the temporal sequence. Points from these each sample labeled with the orientation of the
trajectories are collected together, and mapped boundary in its neighborhood.
onto a reference image taken before the waving Learning to recognize objects: High-quality
began (this image is continuously updated until segmented views of objects can serve as extremely
motion is detected). A standard color segmen- useful training data for object detection and
tation (Comaniciu and Meer, 1997) algorithm is recognition systems, since they unambiguously
applied to this reference image, and points taken label the visual features that are associated with
from waving are used to select and group a set an object. Often these visual features can be
of segmented regions into what is probably the used to detect, track, and recognize the object in
full object. This is done by merging the regions new contexts where the segmentation methods
of the color segmented image whose pixel values presented here are not applicable.
are close to the seed pixel values, and which are Learning about object behavior: Once
connected with the seed pixels, objects can be located and segmented

from the background, they can be tracked
5.3 Waving the object to learn about their dynamic properties

(Metta and Fitzpatrick, 2003).
Multiple moving objects create ambiguous
segmentations from motion, while difficult
figure/ground separation makes segmentation
harder. The strategy described in this section 6.1 Learning about low-level features
filters out undesirable moving objects, while pro-
viding the full object segmentation from motion.
Whenever a teacher waves an object in front of Object segmentation identifies the boundaries
the robot, or sets an oscillating object in motion, around an object. By examining the appear-
the periodic motion of the object is used to seg- ance of this boundary over many objects, it is
ment it (see Figure 7). This technique is trig- possible to build up a model of the appearance
gered whenever the majority of periodic points of edges. This is an empirically grounded al-
are generic in appearance, rather than drawn ternative to the many analytic approaches such
from the hand or finger. The set of periodic points as (Freeman and Adelson, 1991). Figure 8 shows
tracked over time are sparse, and hence an algo- examples of the kind of edge samples gathered
rithm is required to group then into a meaningful using active segmentation on the robot Cog. The
template of the object of interest. An affine flow results show that the most frequent edge appear-
model is estimated by a least squares minimiza- ances are "ideal" straight, noise-free edges, as
tion criterion from the optical flow data. The esti- might be expected. Line-like edges also occur,
mated model plus covariance matrices are used to although with lower probability, along with a di-
recruit other points within the Mahalanobis dis- versity of other more complicated edges (zig-zags,
tance. Finally, a non-convex approximation algo- dashed edges, and so on). Although these sam-
rithm is applied to all periodic, non skin-colored ples are collected for object boundaries, they can
points to segment the object. Note that this ap- be used to estimate orientation throughout an im-
proach is robust to humans or other objects mov- age, giving a general-purpose orientation detector
ing in the background - they are ignored as long that works in situations outside the one for which
as their motion is non-periodic, it is explicitly trained (Fitzpatrick, 2003).
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Figure 9 A simple example of object localization: finding a

L-] - L J-I- l !circle buried inside a Mondrian. Given a model view (left) of

Sthe desired object free from any background clutter, a clut-
tered view of the object. (second from left) can be searched

Li]L-] J-] mJL[--I.--•L for the specific feature combinations seen in the model (cen-

ter), and the target identified amidst the clutter (right). The
features we used combined geometric and color information

•]•iiP• •]•]E-]E- ] across pairs of oriented regions (Fitzpatrick, 2003).

[ [ [J[-- !• ] plexity. In "model" (training)views, every pair of
I-HL] LU[i[-li- [• ~ regions belonging to the object is considered ex-

haustively, and entered into a hash table, indexed
by relative angle, relative position, and the color

Figure 8: The empirical appearance of edges. Each 4 x 4 at sample points between the regions (if inside
grid represents the possible appearance of an edge, quan- the object boundary). When searching for the
tized to just two luminance levels. The line centered in the object, every pair of regions in the current view
grid is the average orientation that patch was observed on is compared with the hash table and matches are
object boundaries during segmentation. Shown are the most accumulated as evidence for the presence of the
frequent appearances observed in about 500 object segmen- object. As a simple example of how this all works,
tations. consider the test case shown in Figure 9. The

system is presented with a model view of the cir-
6.2 Learning to recognize objects cle, and the test image. For simplicity, the model

view in this case is a centered view of the object
With any of the active segmentation behaviors by itself, so no segmentation is required. The pro-
introduced here, the system can familiarize itself cessing on the model and test image is the same;
with the appearance of nearby objects in a spe- first the orientation filter is applied, and then re-
cial, constrained situation. It is then possible to gions of coherent orientation are detected. For
learn to locate and recognize those objects when- the circle, these regions will be small fragments
ever they are present, even when the special cues around its perimeter. For the straight edges in
used for active segmentation are not available, the test image, these regions will be long. So find-
The segmented views can be grouped by their ap- ing the circle reduces to locating a region where
pearance and used to train up an object recogni- there are edge fragments at diverse angles to each
tion module, which can then find them against other, and with the distance between them gen-
background clutter (see Figure 9). erally large with respect to their own size. Even

Object recognition is performed using geometric without using color, this is quite sufficient for a
hashing (Wolfson and Rigoutsos, 1997), based on good localization in this case. The perimeter of
pairs of oriented regions found using the detector the circle can be estimated by looking at the edges
developed in Section 6.1. The orientation filter is that contribute to the peak in match strength.
applied to images, and a simple region growing The algorithm works equally well on an image of
algorithm divides the image into sets of contigu- many circles with one square, and has been ap-
ous pixels with coherent orientation. For realtime plied to many kinds of objects (letters, compound
operation, adaptive thresholding on the minimum geometric shapes, natural objects such as a bottle
size of such regions is applied, so that the number or toy car).
of regions is bounded, independent of scene com- The matching process also allows the boundary



Figure 11: This figure shows stills from a short interaction
with Cog. The area highlighted with squares show the state
of the robot - the left box gives the view from the robot's
camera, the right shows an image it associates with the cur-

Figure 10: A cube being recognized, localized, and segmented rent view. In the first frame, the robot is looking at a cube,
in real images. The image in the first column is one taken which it does not recognize. It pokes the cube, segments it,
when the robot Cog was poking an object, and was used and then it can recognize the cube in future (frame two) and
(along with others) to train the recognition system. The distinguish it from other objects it has poked such as the ball
image in the remain columns are test images. The border (frame three).
superimposed on the images in the bottom row represents the
border of the object produced automatically. Note the scale
and orientation invariance demonstrated in the final image, struck, and was able to use that information to

invoke rolling behavior in objects such as a toy
car (Metta and Fitzpatrick, 2003).

of the object in the image to be recovered. Fig-

ure 10 shows examples of an object (a cube) being 7. Discussion and conclusions
located and segmented automatically, without us-
ing any of the special segmentation contexts dis- In one view of developmental research the goal
cussed in this paper, except for initial training, is to identify a minimal set of hypotheses that
Testing on a set of 400 images of four objects can be used to bootstrap the system towards a
poked by the robot, with half the images used higher level of competency. In tie field of visuo-
for training, and half for testing, gives a recogni- motor control some authors (Metta et al., 1999,
tion error rate of 2%, with a median localization Marjanovi6 et al., 1996) used this approach, ini-
error of 4.2 pixels in a 128 x 128 image (as de- tializing a robotic system with simple behav-
termined by comparing against the center of the iors and then developing more complicated ones
segmented region given by active segmentation). through robot-environment interaction. In this
By segmenting the image by grouping the regions paper we have shown that object segmentation
implicated in locating the object, and filling in, a based on minimal and generic assumptions repre-
median of 83.5% of the object is recovered, and sents a productive basis for such work. Related
14.5% of the background is mistakenly included work (Metta and Fitzpatrick, 2003) has shown
(again, determined by comparison with the re- that behavior dependent on robot-object interac-
suits of active segmentation). tion and mimicry can be based substantially on

In geometric hashing, the procedure applied to object segmentation alone. This work also relates
an image at recognition time is essentially identi- to a branch of developmental research that probes
cal to the procedure applied at training time. We very young human infant behavior in search of
can make use of that fact to integrate training the building blocks of cognition (Spelke, 2000). It
into a fully online system, allowing behavior such has been observed that very young infants a few
as that shown in Figure 11, where a previously hours after birth already possess a bias in recog-
unknown object can be segmented through active nizing faces, human voices, smell, and in explor-
segmentation and then immediately localized and ing the environment (relatively sophisticated hap-
recognized in future interaction, tic exploration strategies have been documented).

Also a crude form of object recognition seems to
6.3 Learning about object behavior be in place, to the level of distinguishing round-

ness or spikiness of objects both haptically and
Once individual objects can be recognized, prop- visually, for instance. In this paper we examined
erties that are more subtle than physical appear- yet another possible candidate: object segmen-
ance can be learned and associated with that ob- tation. We did not venture into the definition
ject. For a robot, the affordances offered by an of the developmental rules that might help the
object are important to know (Gibson, 1977). In robot in building complex behaviors by means of
previous work, Cog was given the ability to char- this primitive, but showed that in principle a sys-
acterize the tendency of an object to roll when tem can build on top of object segmentation. We
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